Bibliographic Ressources

Bibliographic Ressources


Echelle relative

L’échelle relative (encore appelé l’échelle à intervalles) définit numériquement les intervalles entre les données. Cette échelle possède une unité de mesure arbitraire mais constante. Cependant, le zéro sur ces échelles est défini de façon arbitraire. Un exemple est la température exprimée en celsius. Zéro Celsius est un point arbitraire qui a été choisi par convention. D’ailleurs les échelles Fahrenheit…

Echelle ordinale

L’échelle ordinale est similaire à l’échelle nominale exceptée qu’elle permet d’établir une relation d’ordre entre les éléments d’un ensemble, sans toutefois être capable d’évaluer de façon quantitative la distance qui les sépare. Dans l’exemple précédent, il est impossible de dire si la catégorie « Homme » doit être placée avant la catégorie « Femme ». Un exemple d’échelle ordinale…

Echelle nominale

L’échelle nominale implique un simple groupement des observations en catégories qualitatives identifiées par un symbole (souvent une étiquette, tel « Homme » et « Femme » pour identifier le sexe). La seule opération mathématique possible avec cette échelle est de compter le nombre d’éléments (les effectifs) dans chacune des catégories (parfois nommées des classes), qu’on appelle aussi la fréquence…

Echelle absolue

L’échelle absolue (parfois appelée échelle de rapport) implique que la distance entre deux unités est la même tout au long de l’échelle (tout comme dans l’échelle relative) mais aussi que le zéro existe (autrement que par un choix arbitraire). En plus de permettre de quantifier la différence entre deux éléments, elle permet aussi de calculer des rapports entre deux…

Echantillon

Ensemble de données brutes (observations) extrait d’une population cible. En méthodologie scientifique, l’on distingue différents types d’échantillon : L’échantillon aléatoire implique que la sélection des observations se fait entièrement par hasard, tous les éléments de la population ayant une chance égale d’apparaître dans l’échantillon. Dans l’échantillon contrôlé, les éléments sont choisis selon certains critères préétablis (par exemple, dans une étude sur des étudiants universitaires, l’échantillon sera formé en choisissant un…

Ecart type non biaisé d’un échantillon

Noté n-1ou Sn-1 . L’’écart type non biaisé d’’un échantillon est donné par la racine carrée de la variance non biaisée d’’un échantillon. Parce que l’’écart type s’’exprime dans la même unité de mesure que les données brutes, on rapporte plus souvent cette mesure que la variance.

Ecart type d’un échantillon

Noté nou Sn . L’’écart type d’’un échantillon est donnée par la racine carrée de la variance d’’un échantillon. Parce que l’’écart type s’’exprime dans la même unité de mesure que les données brutes, on rapporte plus souvent cette mesure que la variance.

Donnée brute

Une mesure obtenue de la population cible. Un ensemble de données constitue l’échantillon. Souvent, pour différencier les données brutes, on va les assigner à un ensemble d’observation X, tel que la première mesure obtenue sera notée X1, la seconde X2, la ième Xi, et finalement, la dernière, Xn. Ici, on suppose que n dénote le…

Distribution théorique

Une distribution est une fonction qui donne la probabilité d’un événement X. Par exemple, lorsque l’on dit que X est distribué comme une normale standardisée (que l’on note X ~ N(0,1)), cela implique qu’il existe une formule pour connaître la probabilité que X prenne la valeur x, que l’on note Pr{X = x}, et qu’on illustre…

Critère de décision

Le critère de décision est souvent notée par la lettre grecque α. Il s’agit d’une valeur choisie par l’expérimentateur (et donc constante à l’intérieur de son rapport) indiquant la probabilité que ses conclusions soient erronées (dans le sens d’une erreur α). Par exemple, si l’expérimentateur choisi un seuil α de 0.05 (valeur usuellement choisie), l’expérimentateur…

Constante

Quantité qui ne change pas, qui demeure invariable. Souvent, les constantes sont représentées par les lettres c, k, l, m (bien que ce soit un choix arbitraire). Par exemple, e est la constante pour les logarithmes népériens, égal à 2.71828182845904523… La valeur d’une constante ne change pas à l’intérieur d’un contexte donné, tout comme la…

CDF (Cumulative distribution function)

Traduit par Fonction cumulative de distribution, ou plus simplement par Fonction de distribution, représente la probabilité qu’une valeur X échantillonnée par hasard dans une population soit égale ou moindre que x (noté par le raccourci Pr { X ≤ x }). Le type de fonction cumulative de distribution utilisé dépend des postulats posés sur la population.…

Arrondissement et nombre de chiffres significatifs

Lorsque l’on collecte une mesure sur un individu, l’instrument de mesure utilisé n’a jamais une précision infinie. Par exemple, pour mesurer la taille d’un individu, on utilise une règle graduée en centimètre. La mesure obtenue sera donc du genre 1m 56cm ± 0.5 cm, ou encore: 1.560 ± 0.005. Autrement dit, la dernière décimale cihaut…

C12: Corrélation et régression

Section 1. À Washington, ce sont les cigognes qui apportent les bébés L’étude des corrélations entre deux variables est un domaine qui peut parfois révéler beaucoup sur les mécanismes sous-jacents. Par exemple, chez les conducteurs automobiles, il existe une très forte corrélation entre le fait de posséder un téléphone cellulaire et le nombre d’accident automobile.…

C11: Homogénéité de la variance et transformations non linéaires

Section 1. Régularité de la nature et effets linéaires La recherche de lois scientifiques passe la découverte de régularités. La meilleure façon est de faire des mesures quand un facteur varie suivant plusieurs niveaux. Lorsqu’un graphe des résultats montre une ligne parfaitement droite, on sait qu’on vient de découvrir une régularité. Dans les faits cependant,…

C10: Plans à mesures répétées

Section 1. Principes d’un plan à mesures répétées Dans le domaine des sciences du comportement, les chercheurs utilisent souvent des humains. À cause de leurs caractéristiques personnelles, de leurs expériences, et de leurs réactivités individuelles, les réponses d’individus différents aux même traitements expérimentaux font montre d’une très grande variabilité. Dans un plan d’expérience à mesures…

C9: Plans à plusieurs facteurs

Section 1. Diviser pour régner,rassembler pour saisir Le mathématicien Henri Poincarré faisait remarquer au début du XXième siècle que la science progresse de façon très particulière: une théorie représente une avancée significative si elle remplace plusieurs théories distinctes ou si elle englobe plusieurs phénomènes d’allure différents. Ce fut le cas pour la théorie de Newton…

C8: Analyse de variance à un facteur

Section 1. « un coup de dé jamais n’abolira le hasard » Une façon simple de sonder une question est de monter une expérience dans laquelle nous contrastons une situation avec un traitement vs. une situation neutre. Par exemple, nous pouvons étudier la dextérité manuelle lorsque les participants utilisent leur main dominante (la droite pour beaucoup) et…

C6: Tableau de contingences et tests du X2

Section 1. Attribut moyen vs. répartition d’attributs Pour faire des statistiques, il faut avant tout mesurer un attribut sur des individus. Souvent par la suite, on rapporte la mesure de tendance centrale: la moyenne. Or certains attributs ne se moyennent pas. Par exemple, lorsque l’on dit qu’il y a 30% de fumeurs, on ne dit…